POINTWISE CONVERGENCE OF THE ITERATES OF A HARRIS-RECURRENT MARKOV OPERATOR

BY SHLOMO HOROWITZ^{*}

ABSTRACT

Let P be a Markov operator recurrent in the sense of Harris, with σ -finite invariant measure μ . (1) If μ is finite and P aperiodic, then for $f \in L_1(\mu)$, $P^n f \to \int f d\mu$ a.e. (2) If μ is infinite, $P^n f \to 0$ a.e. for every $f \in L_p(\mu)$, $1 \le p < \infty$.

Let P(x, A) be a transition probability on the measurable space (X, Σ) , and denote also by P the operator on $B(X, \Sigma)$ defined by $Pf(x) = \int f(y)P(x, dy)$. P is *Harris-recurrent* if for a σ -finite measure m we have $m(A) > 0 \Rightarrow \sum_{n=0}^{\infty} P^n 1_A(x) = \infty$ for every x. It is well-known (see, for example, [2], [8]) that if P is Harris-recurrent, then there is a unique σ -finite measure μ , invariant for P. We then have $m \ll \mu$, and also $\mu(A) > 0 \Rightarrow \sum_{n=0}^{\infty} P^n 1_A(x) = \infty$ for every x.

The purpose of this note is to prove the following almost everywhere convergence theorems for functions in $L_p(\mu)$. The results are known for *bounded* functions in $L_p(\mu)$ (see, for example, [2], [8], [5]). Harris-recurrence is treated in [2] and [8].

THEOREM 1. Let P be Harris-recurrent with finite invariant measure μ . If P is aperiodic, then for every $f \in L_1(\mu)$ we have $P^n f(x) \rightarrow \int f d\mu$ a.e.

THEOREM 2. Let P be Harris recurrent with infinite σ -finite invariant measure μ . Then for every $f \in L_p(\mu)$, $1 \leq p < \infty$, we have $P^n f(x) \rightarrow 0$ a.e.

For the proof we need the following lemma, due to Orey [7] (see also [8]).

Received November 1, 1978

⁺Dr. Shlomo Horowitz died before completing the manuscript. He left a draft, to which I added the last paragraph, references, title and abstract. I made only slight modifications in a place or two in the proofs, for clarity (M. Lin).

LEMMA 1. Let Σ be separable and P Harris-recurrent. Then there exist an integer k, a $\Sigma \times \Sigma$ measurable function $q(x, y) \ge 0$, and sets $B, C \in \Sigma$ (with $\mu(B)\mu(C) > 0$), such that:

- (a) $P^k \ge Q > 0$, where $Qf(x) = \int q(x, y)f(y)\mu(dy)$.
- (b) $\inf\{q(x, y): x \in B, y \in C\} = \alpha > 0.$
- (c) P^k is Harris-recurrent.

As a consequence of this lemma, we get that $P^{k} \ge Q \ge \alpha \mathbf{1}_{B} \bigotimes \mu I_{c}$.

The following lemmas are well-known. The case $U = PI_A$ is shown in [2], but the proof is valid for the general case.

LEMMA 2. If P > U > 0, then $U^{n} \downarrow 0$ a.e.

PROOF. U"1 decreases, so let $U^n \downarrow h$. Then $Uh = h \Rightarrow Ph \ge h \Rightarrow Ph = h$, so h = const, since P is conservative and ergodic in $L_{\infty}(\mu)$. Hence Uh = h = c1, and, if $c \ne 0$, U1 = 1. Since P > U, we have a contradiction. Hence c = 0.

LEMMA 3. If P > U > 0, then $\sum_{n=0}^{\infty} (P - U)^n U = 1$ a.e.

PROOF. Since U = P - (P - U), we have

$$\sum_{n=0}^{N} (P-U)^{n} U 1 = \sum_{n=0}^{N} (P-U)^{n} 1 - \sum_{n=1}^{N+1} (P-U)^{n} 1 = 1 - (P-U)^{N+1} 1$$

Let $N \rightarrow \infty$ and apply Lemma 2 (to P - U).

LEMMA 4. Let P > U > 0. If $0 \le f \in L_p(\mu)$, $1 \le p < \infty$ (and $\mu P = \mu$), then $(P - U)^n f \to 0$ a.e.

PROOF. The proof of Lemma 2 shows that P - U has no superinvariant functions in L_{∞} . Hence P - U is either dissipative or conservative. Since $\mu (P - U) \leq \mu$, the same applies to (P - U)g as an operator of $L_1(\mu)$ ([2, p. 76]), and by Lemma 3 we must have that P - U is dissipative. Hence, for $0 \leq f \in L_1(\mu)$ we have $\sum_{n=0}^{\infty} (P - U)^n f < \infty$ a.e., hence $(P - U)^n f \to 0$ a.e. If $0 \leq f \in L_p(\mu)$, then $f \leq 1 + (f - 1)^+$, with $(f - 1)^+ \in L_1(\mu)$. Hence

$$(P-U)^n f \leq (P-U)^n 1 + (P-U)^n (f-1)^+ \to 0$$
 a.e.

LEMMA 5. Let P be Harris-aperiodic with finite invariant measure μ , and let Σ be separable. If $C \in \Sigma$, and $f \in L_1(\mu)$ satisfies $\int f d\mu = 0$, then $\int P^n f \cdot 1_C d\mu \to 0$.

PROOF. The Harris-recurrence condition implies, by Lemma 1, the Harris condition as given in [2], and the dual Markov operator P^* is also aperiodic Harris [2], and $P^{**}1_C \rightarrow \mu(C)$ a.e. ([2], [5]). Hence

$$\int P^n f \cdot 1_C d\mu = \int f P^{*n} 1_C d\mu \to \mu(C) \int f d\mu = 0.$$

LEMMA 6. Let P be Harris with infinite σ -finite invariant measure μ , and let Σ be separable. If $C \in \Sigma$ with $\mu(C) < \infty$, and $0 \le f \in L_p(\mu)$, $1 \le p < \infty$, then $\int P^n f \cdot 1_C d\mu \to 0$.

PROOF. If $f \in L_1(\mu)$, the proof is as before, except that $P^{*n}1_C \to 0$ a.e. If $f \in L_p(\mu)$, $1 , then for <math>\varepsilon > 0$ write f = g + h, with $g \in L_1(\mu)$ and $||h||_p < \varepsilon$. Then $\int P^n g \cdot 1_C d\mu \to 0$, and $0 \leq \int P^n h \cdot 1_C d\mu \leq \varepsilon \mu (C)^{1/q}$ (with q = p/(p-1)), since P is a contraction of $L_p(\mu)$. The lemma now follows.

The next lemma is an abstraction of the "first entrance formula", and can be proved by induction.

LEMMA 7. Let a, b be elements of a ring. Then

$$a^{n} = \sum_{k=0}^{n-1} (a-b)^{k} b a^{n-1-k} + (a-b)^{n}.$$

PROOF OF THEOREMS 1 AND 2. We first assume that Σ is separable, and Lemma 1 can be applied. We may assume that in Lemma 1, k = 1 (otherwise we prove the theorem for P^k , and then apply it to the functions P^if , $0 \le j \le k - 1$).

Choose in Lemma 7, a = P, $b = \alpha 1_B \otimes \mu I_C$, and obtain

$$P^{n}f(x) = \sum_{k=0}^{n-1} \left(P - \alpha \mathbf{1}_{B} \otimes \mu I_{C}\right)^{k} \alpha \mathbf{1}_{B}(x) \int P^{n-1-k}f \cdot \mathbf{1}_{C}d\mu + \left(P - \alpha \mathbf{1}_{B} \otimes \mu I_{C}\right)^{n}f(x).$$

For Theorem 1 we assume, w.l.g., $\int f d\mu = 0$. By Lemma 4 the last term tends to 0. Since $\mu(C) < \infty$, by Lemmas 5 and $\int \int P^n f \cdot 1_C d\mu \to 0$, and, by Lemma 3,

$$\mu(C)\sum_{k=0}^{\infty} (P-\alpha \mathbf{1}_B \otimes \mu I_C)^k \alpha \mathbf{1}_B(x) = 1.$$

After excluding a set of measure 0, for $\varepsilon > 0$ and $x \in X$ there is an N such that

$$\sum_{k=N}^{\infty} (P - \alpha \mathbf{1}_B \otimes \mu I_C)^k \alpha \mathbf{1}_B(x) < \varepsilon,$$

and

$$\int P^n f \cdot 1_C d\mu < \varepsilon \qquad \text{for } n > N.$$

Then, for n > 2N, we have

$$\sum_{k=0}^{N} (P - \alpha \mathbf{1}_{B} \otimes \mu I_{C})^{k} \alpha \mathbf{1}_{B}(x) \int P^{n-1-k} f \cdot \mathbf{1}_{C} d\mu < \varepsilon \sum_{k=0}^{N} (P - \alpha \mathbf{1}_{B} \otimes \mu I_{C})^{k} \alpha \mathbf{1}_{B}(x) \leq \varepsilon / \mu (C),$$

and

$$\sum_{k=N+1}^{n-1} \left(P - \alpha \mathbf{1}_B \bigotimes \mu I_C \right)^k \alpha \mathbf{1}_B(x) \int P^{n-1-k} f \cdot \mathbf{1}_C d\mu \leq \varepsilon \| f \|_p \| \mathbf{1}_C \|_q$$

and the theorems are proved, in case that Σ is separable.

For the case that Σ is not separable, we take the *admissible* σ -field, $\Sigma' \subset \Sigma$ such that f is Σ' measurable, Σ' is separable, and $B(X, \Sigma')$ is invariant for P (see [1, p. 209]).

REMARKS. (1) If we deal with the abstract Harris condition, as used in [2], we can get to the Harris-recurrence condition via the method in [3], or (after reduction to the separable case, as above) via [4].

(2) Theorem 2 is given a different proof in [6, theor. 3]. The assumption there for our Theorem 2 is also of aperiodicity (with only a sketch of proof). The approach in this note is simpler.

References

1. J. L. Doob, Stochastic Processes, Wiley, New York, 1953.

2. S. R. Foguel, Ergodic Theory of Markov Processes, Van Nostrand-Reinhold, New York, 1969.

3. S. Horowitz, Transition probabilities and contractions of L_{∞} , Z. Wahrscheinlichkeitstheorie 24 (1972), 263-274.

4. N. C. Jain, A note on invariant measures, Ann. Math. Statist. 37 (1966), 729-732.

5. N. C. Jain, Some limit theorems for a general Markov process, Z. Wahrscheinlichkeitstheorie 6 (1966), 206-223.

6. E. Nummelin and R. L. Tweedie, Geometric ergodicity and R-positivity for general Markov chains, Ann. Probability, to appear.

7. S. Orey, Recurrent Markov chains, Pacific J. Math. 9 (1959), 805-827.

8. S. Orey, Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities, Van Nostrand, New York, 1971.

TEL AVIV UNIVERSITY RAMAT AVIV TEL AVIV, ISRAEL