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POINTWISE CONVERGENCE OF THE 
ITERATES OF A HARRIS-RECURRENT 

MARKOV OPERATOR 

BY 

SHLOMO HOROWITZ* 

ABSTRACT 

Let P be a Markov operator recurrent in the sense of Harris, with o'-finite 
invariant measure /z. (1) If/.t is finite and P aperiodic, then for /ELI(/.*), 
P~[ ~ f [d~ a.e. (2) If/z is infinite, P"f ---* 0 a.e. for every f E Lp (/.,), 1 _--< p < oo. 

Let  P(x, A )  be a transit ion probabil i ty on the measurable  space (X,X), and 

deno te  also by P the opera to r  on B(X,  X) defined by PIr(x) = fIr(y)P(x,  dy).  P is 

Harris-recurrent if for  a ~r-finite measure  m we have r e ( A ) > 0  

ETa0 P "  1A (x) = oo for  every x. It is wel l -known (see, for example,  [2], [8]) that  if P 

is Harr is-recurrent ,  then there is a unique it-finite measu re / z ,  invariant for P. 

W e  then have m "~t~, and also / x ( A ) > 0  ~ XT=oPnlA(x)=oo for  every x. 
The purpose  of  this no te  is to prove the following almost  everywhere  

convergence  theorems  for  funct ions in L v (/z). The  results are known for bounded 

functions in Lp(/x) (see, for example,  [2], [8], [5]). Harr i s - recurrence  is t reated in 

[2] and [8]. 

THEOREM 1. Let P be Harris-recurrent with finite invariant measure t~. f f  P is 
aperiodic, then for every IrE Ll(I.t ) we have P"ir(x )--> f fdl.~ a.e. 

THEOREM 2. Let P be Harris recurrent with infinite or-finite invariant measure 
I~. Then for every IrE Lp(l~), 1 < p  <o% we have P"f (x) -~O a.e. 

For  the p roof  we need  the following lemma, due  to Orey  [7] (see also [8]). 

*Dr. Shlomo Horowitz died before completing the manuscript. He left a draft, to which I added 
the last paragraph, references, title and abstract. I made only slight modifications in a place or two in 
the proofs, for clarity (M. Lin). 
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LEMMA 1. Let X be separable and P Harris-recurrent. Then there exist an 

integer k, a X × X  measurable function q(x,y)=>0,  and sets B, C ~ X (with 

/, (B )p. (C) > 0), such that: 

(a) pk => O > 0 ,  where O f ( x ) = f q ( x , y ) f ( y ) ~ ( d y ) .  

(b) inf{q(x,y) :  x ~ B, y E C}=  a > 0 .  

(c) pk is Harris-recurrent. 

As a consequence of this lemma, we get that pk >___ Q >= a 18 ~)tzh.  

The following lemmas are well-known. The case U = PIA is shown in [2], but 

the proof is valid for the general case. 

LEMMA 2. I f  P > U > 0, then U" 1 $ 0 a.e. 

PROOF. U" 1 decreases, so let U" 1 ,[, h. Then Uh = h ~ Ph >= h ::> Ph = h, 

so h = const, since P is conservative and ergodic in L®(p,). Hence Uh = h = c 1, 

and, if c #  0, U1 = 1. Since P > U, we have a contradiction. Hence c = 0. 

LEMMA 3. I f  P >  U > 0 ,  then X T - o ( P - U ) " U I =  1 a.e. 

PROOF. Since U = P -  ( P -  U), we have 

N N N + I  

E ( P -  U)"U1 = ~_~ ( V -  U ) " l -  ~ ( e -  u ) " l  = 1 - ( v -  u ) " " l .  
n - - 0  n ~ O  n = l  

Let N---> oo and apply Lemma 2 (to P -  U). 

LEMMA 4. Let P > U > O. I f  0 <- f ~ Lp (Ix), 1 <= p < oo (and tzP = tz), then 

( P -  U)7--->0 a.e. 

PROOF. The proof of Lemma 2 shows that P - U  has no superinvariant 

functions in L®. Hence P - U  is either dissipative or conservative. Since 

(P - U) _-</x, the same applies to (P - U)g as an operator  of L~(tz) ([2, p. 76]), 

and by Lemma 3 we must have that P - U  is dissipative. Hence, for 0_-< 

f E L I ( t z )  we have E ~ - o ( P - U ) " f < o o  a.e., hence ( P - U ) " f ~ O  a.e. If 0_- < 

f E L~(/,~), then f < 1 + O r -  1) ÷, with Or-  1) ÷ E L~(/z). Hence 

(P - U)"f <= (P - U)" 1 + (P - U)" Or - 1) ÷ ---* 0 a.e. 
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LEMMA 5. Let P be Harris-aperiodic with finite invariant measure tx, and let E 

be separable. I[ C E E, and [ E L l(g ) satisfies f [d~ = O, then f P"]' . 1 ccltz ~ O. 

PRooF. The Harris-recurrence condition implies, by Lemma 1, the Harris 

condition as given in [2], and the dual Markov operator  P*  is also aperiodic 

Harris [2], and P*"lc~g(C) a.e. ([2], [5]). Hence 

f P"f.l~=f fP*"loa~t~(c) f fdtz=O. 
LE~tA 6. Let P be Harris with infinite ~r-finite invariant measure i~, and let If, 

be separable. I[ C E E  with g ( C ) < 0 o ,  and O<- fELp( t z ) ,  l = < p <  oo, then 

f e ~ f .  l ed~ -o0 .  

PROOF. If f E L,(/~), the proof is as before ,  except that P * " l c - o O  a.e. If 

f E / . ~ ( / z ) ,  l < p < o o ,  then for e > 0  write [ = g + h ,  with g ~ L , ( l ~ )  and 

Ilh ttp < e. Then f P"g . lcdl~ --~O, and O<= f P"h . lccl~ <- etx(C) '/q (with 

q = p / ( p -  1)), since P is a contraction of L~(#). The lemma now follows. 

The next lemma is an abstraction of the "first entrance formula",  and can be 

proved by induction. 

LEMMA 7. Let a, b be elements of  a ring. Then 
n- - I  

a" = ~ (a - b)kba"-'-k + (a - b)". 
k=O 

PROOF OF TrmO~MS 1 AND 2. We first assume that ~ is separable, and Lemma 

1 can be applied. We may assume that in Lemma 1, k = 1 (otherwise we prove 

the theorem for pk, and then apply it to the functions PJf, 0<-_-] <= k - 1 ) .  

Choose in Lemma 7, a = P, b = a l a  Ql~Ic, and obtain 

t~--I f P" f (x )  = ~ (P - a l s  Q t z l c ) k a l s ( x )  p . - , - k f  . lcdtx + (P - a l s  (~lxlc)"f(x) .  
k--O 

For Theorem 1 we assume, w.l.g., f fdl~ = 0. By Lemma 4 the last term tends to 

0. Since g (C) < 00, by Lemmas 5 and 6 f P " f .  l cdg  ~ 0, and, by Lemma 3, 

~(c)  ~ (P - alB ®~I¢)~a 1.(x)= 1. 
k~0 

After  excluding a set of measure O, for e > 0 and x E X there is an N such that 

(P - a lB Q l~Ic)ka l s ( x  ) < e, 
k = N  

and 

f P " f .  l c d # <  f o r n  > N .  



180 s.  H O R O W I T Z  Israel J. Math. 

Then, for n > 2N, we have 

( P - a l s ~ t z l c ) k a l . ( x )  P"-~-k]" lcdtz <e  ~, ( P - a l . ~ l ~ I c ) k a l . ( x )  
k~O k~O 

_-< ~/~ (C), 

and 

n - I  

E k ~N+I 
(P - a 1 a ~ Ixlc )ka 1 a (X) f P"-1-~f. 1 cd/z =< e II f lie 11 lc flq, 

ant, the theorems are proved, in case that E is separable. 

For the case that E is not separable, we take the admissible g-field, E' CE such 

that f is E' measurable, E' is separable, and B (X, ~') is invariant for P (see [1, p. 
209]). 

REMARKS. (1) If we deal with the abstract Harris condition, as used in [2], we 

can get to the Harris-recurrence condition via the method in [3], or (after 

reduction to the separable case, as above) via [4]. 
(2) Theorem 2 is given a different proof in [6, theor. 3]. The assumption there 

for our Theorem 2 is also of aperiodicity (with only a sketch of proof). The 

approach in this note is simpler. 
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