POINTWISE CONVERGENCE OF THE ITERATES OF A HARRIS-RECURRENT MARKOV OPERATOR

BY SHLOMO HOROWITZ*

ABSTRACT

Let P be a Markov operator recurrent in the sense of Harris, with σ -finite invariant measure μ . (1) If μ is finite and P aperiodic, then for $f \in L_1(\mu)$, $P^{\prime\prime}f \rightarrow \int f d\mu$ a.e. (2) If μ is infinite, $P^{\prime\prime}f \rightarrow 0$ a.e. for every $f \in L_p(\mu), 1 \leq p < \infty$.

Let $P(x, A)$ be a transition probability on the measurable space (X, Σ) , and denote also by P the operator on $B(X, \Sigma)$ defined by $Pf(x) = \int f(y)P(x, dy)$. P is *Harris-recurrent* if for a σ -finite measure m we have $m(A) > 0 \Rightarrow$ $\sum_{n=0}^{\infty} P^{n} 1_{A}(x) = \infty$ for *every x.* It is well-known (see, for example, [2], [8]) that if P is Harris-recurrent, then there is a unique σ -finite measure μ , invariant for P. We then have $m \ll \mu$, and also $\mu(A) > 0 \implies \sum_{n=0}^{\infty} P^{n}1_{A}(x) = \infty$ for *every x.*

The purpose of this note is to prove the following almost everywhere convergence theorems for functions in $L_p(\mu)$. The results are known for *bounded* functions in $L_p(\mu)$ (see, for example, [2], [8], [5]). Harris-recurrence is treated in [2] and [8].

THEOREM 1. Let P be Harris-recurrent with finite invariant measure μ . If P is *aperiodic, then for every* $f \in L_1(\mu)$ *we have* $P^r f(x) \to \int f d\mu$ *a.e.*

THEOREM 2. Let P be Harris recurrent with infinite σ -finite invariant measure μ . Then for every $f \in L_p(\mu)$, $1 \leq p < \infty$, we have $P^n f(x) \to 0$ a.e.

For the proof we need the following lemma, due to Orey [7] (see also [8]).

^{*}Dr. Shlomo Horowitz died before completing the manuscript. He left a draft, to which I added the last paragraph, references, title and abstract. I made only slight modifications in a place or two in the proofs, for clarity (M. Lin).

Received November 1, 1978

LEMMA 1. Let Σ be separable and P Harris-recurrent. Then there exist an *integer* k, a $\Sigma \times \Sigma$ *measurable function* $q(x, y) \ge 0$ *, and sets* $B, C \in \Sigma$ (with $\mu(B)\mu(C)$ > 0), *such that*:

- (a) $P^k \ge 0 > 0$, where $Qf(x) = \int q(x, y)f(y)\mu(dy)$.
- (b) inf{ $q(x, y)$: $x \in B$, $y \in C$ } = $\alpha > 0$.
- (c) *pk is Harris-recurrent.*

As a consequence of this lemma, we get that $P^k \ge Q \ge \alpha \mathbb{1}_B \otimes \mu I_c$.

The following lemmas are well-known. The case $U = PI_A$ is shown in [2], but the proof is valid for the general case.

LEMMA 2. If $P > U > 0$, then $U^*1 \downarrow 0$ a.e.

PROOF. Uⁿ 1 decreases, so let Uⁿ 1 \downarrow h. Then $Uh = h \Rightarrow Ph \ge h \Rightarrow Ph = h$, so $h =$ const, since P is conservative and ergodic in $L_{\infty}(\mu)$. Hence $Uh = h = c1$, and, if $c \neq 0$, $U1 = 1$. Since $P > U$, we have a contradiction. Hence $c = 0$.

LEMMA 3. If $P > U > 0$, then $\sum_{n=0}^{\infty} (P-U)^n U 1 = 1$ a.e.

PROOF. Since $U = P - (P - U)$, we have

$$
\sum_{n=0}^{N} (P-U)^{n} U1 = \sum_{n=0}^{N} (P-U)^{n} 1 - \sum_{n=1}^{N+1} (P-U)^{n} 1 = 1 - (P-U)^{N+1} 1.
$$

Let $N \rightarrow \infty$ and apply Lemma 2 (to $P - U$).

LEMMA 4. Let $P > U > 0$. If $0 \le f \in L_p(\mu)$, $1 \le p < \infty$ (and $\mu P = \mu$), then $(P-U)^{n}f\rightarrow 0$ a.e.

PROOF. The proof of Lemma 2 shows that $P-U$ has no superinvariant functions in L_{∞} . Hence $P-U$ is either dissipative or conservative. Since $\mu(P - U) \leq \mu$, the same applies to $(P - U)g$ as an operator of $L_1(\mu)$ ([2, p. 76]), and by Lemma 3 we must have that $P-U$ is dissipative. Hence, for $0 \leq$ $f\in L_1(\mu)$ we have $\sum_{n=0}^{\infty} (P-U)^n f < \infty$ a.e., hence $(P-U)^n f \rightarrow 0$ a.e. If $0 \le$ $f \in L_p(\mu)$, then $f \leq 1 + (f-1)^+$, with $(f-1)^+ \in L_1(\mu)$. Hence

$$
(P-U)^{n} f \leq (P-U)^{n} 1 + (P-U)^{n} (f-1)^{+} \to 0 \quad \text{a.e.}
$$

LEMMA 5. Let P be Harris-aperiodic with finite invariant measure μ , and let Σ *be separable. If* $C \in \Sigma$ *, and* $f \in L_1(\mu)$ satisfies $\int f d\mu = 0$ *, then* $\int P^r f \cdot 1_C d\mu \rightarrow 0$ *.*

PRooF. The Harris-recurrence condition implies, by Lemma 1, the Harris condition as given in [2], and the dual Markov operator P^* is also aperiodic Harris [2], and $P^{*n}1_c \rightarrow \mu(C)$ a.e. ([2], [5]). Hence

$$
\int P^{n}f \cdot 1_{c} d\mu = \int f P^{*n} 1_{c} d\mu \rightarrow \mu(C) \int f d\mu = 0.
$$

LEMMA 6. Let P be Harris with infinite σ -finite invariant measure μ , and let Σ *be separable. If* $C \in \Sigma$ with $\mu(C) < \infty$, and $0 \leq f \in L_p(\mu)$, $1 \leq p < \infty$, then $\int P^{n}f\cdot 1_{c}d\mu\rightarrow 0.$

PROOF. If $f \in L_1(\mu)$, the proof is as before, except that $P^{*n}1_c \rightarrow 0$ a.e. If $f\in L_p(\mu)$, $1 < p < \infty$, then for $\varepsilon > 0$ write $f = g + h$, with $g \in L_1(\mu)$ and $||h||_p < \varepsilon$. Then $\int P^{\prime\prime}g \cdot 1_C d\mu \to 0$, and $0 \leq \int P^{\prime\prime}h \cdot 1_C d\mu \leq \varepsilon \mu(C)^{1/q}$ (with $q = p/(p-1)$, since P is a contraction of $L_p(\mu)$. The lemma now follows.

The next lemma is an abstraction of the "first entrance formula", and can be proved by induction.

LEMMA 7. *Let a, b be elements of a ring. Then*

$$
a^{n} = \sum_{k=0}^{n-1} (a-b)^{k}ba^{n-1-k} + (a-b)^{n}.
$$

PROOF OF THEOREMS 1 AND 2. We first assume that Σ is separable, and Lemma 1 can be applied. We may assume that in Lemma 1, $k = 1$ (otherwise we prove the theorem for P^k , and then apply it to the functions $P^j f$, $0 \le j \le k - 1$).

Choose in Lemma 7, $a = P$, $b = \alpha 1_B \otimes \mu I_c$, and obtain

$$
P^{\prime\prime}f(x)=\sum_{k=0}^{n-1}\left(P-\alpha 1_B\otimes\mu I_C\right)^k\alpha 1_B(x)\int P^{n-1-k}f\cdot 1_Cd\mu+(P-\alpha 1_B\otimes\mu I_C)^{\prime\prime}f(x).
$$

For Theorem 1 we assume, w.l.g., $\int f d\mu = 0$. By Lemma 4 the last term tends to 0. Since $\mu(C) < \infty$, by Lemmas 5 and 6 $\int P^{n}f \cdot 1_{c} d\mu \rightarrow 0$, and, by Lemma 3,

$$
\mu(C)\sum_{k=0}^{\infty} (P-\alpha 1_B \otimes \mu I_C)^k \alpha 1_B(x) = 1.
$$

After excluding a set of measure 0, for $\varepsilon > 0$ and $x \in X$ there is an N such that

$$
\sum_{k=N}^{\infty} (P - \alpha 1_B \otimes \mu I_C)^k \alpha 1_B(x) < \varepsilon,
$$

and

$$
\int P^r f \cdot 1_C d\mu < \varepsilon \qquad \text{for } n > N.
$$

Then, for $n > 2N$, we have

$$
\sum_{k=0}^{N} (P - \alpha 1_B \otimes \mu I_C)^k \alpha 1_B(x) \int P^{n-1-k} f \cdot 1_C d\mu < \varepsilon \sum_{k=0}^{N} (P - \alpha 1_B \otimes \mu I_C)^k \alpha 1_B(x) \leq \varepsilon / \mu(C),
$$

and

$$
\sum_{k=N+1}^{n-1} (P-\alpha 1_B \otimes \mu I_C)^k \alpha 1_B(x) \int P^{n-1-k} f \cdot 1_C d\mu \leq \varepsilon \|f\|_p \|1_C\|_q,
$$

and the theorems are proved, in case that Σ is separable.

For the case that Σ is not separable, we take the *admissible* σ -field, $\Sigma' \subset \Sigma$ such that f is Σ' measurable, Σ' is separable, and $B(X, \Sigma')$ is invariant for P (see [1, p. 209]).

REMARKS. (1) If we deal with the abstract Harris condition, as used in [2], we can get to the Harris-recurrence condition via the method in [3], or (after reduction to the separable case, as above) via [4].

(2) Theorem 2 is given a different proof in [6, theor. 3]. The assumption there for our Theorem 2 is also of aperiodicity (with only a sketch of proof). The approach in this note is simpler.

REFERENCES

1. J. L. Doob, *Stochastic Processes,* Wiley, New York, 1953.

2. S. R. Foguel, *Ergodic Theory of Markov Processes,* Van Nostrand-Reinhold, New York, 1969.

3. S. Horowitz, *Transition probabilities and contractions of L~, Z.* Wahrscheinlichkeitstheorie 24 (1972), 263-274.

4. N. C. Jain, *A note on invariant measures,* Ann. Math. Statist. 37 (1966), 729-732.

5. N. C. Jain, *Some limit theorems for a general Markov process,* Z. Wahrscheinlichkeitstheorie 6 (1966), 206-223.

6. E. Nummelin and R. L. Tweedie, *Geometric ergodicity and R-positivity for general Markov chains,* Ann. Probability, to appear.

7. S. Orey, *Recurrent Markov chains,* Pacific J. Math. 9 (1959), 805-827.

8. S. Orey, *Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities,* Van Nostrand, New York, 1971.

TEL AVlV UNIVERSITY RAMAT AvIv TEL AvIv, ISRAEL